SEMESTER WISE COURSE STRUCTURE & EVALUATION SCHEME

for

B. TECH. DEGREE PROGRAMME IN CHEMICAL TECHNOLOGY PLASTIC TECHNOLOGY

(Effective from the session 2022-23)

DEPARTMENT OF PLASTIC TECHNOLOGY SCHOOL OF CHEMICAL TECHNOLOGY HARCOURT BUTLER TECHNICAL UNIVERSITY KANPUR-208002 UTTAR PRADESH

Department of Chemical Technology-Plastic Technology

Vision

"The department of chemical technology-plastic technology aspires to achieve excellence in technical knowledge and skill, research and innovation in Plastics and Allied areas"

Mission

The mission of the Department of Chemical Technology- Plastic Technology are:

- M 1 To develop state-of-the-art facilities to impart technical knowledge and skill to the graduate & post graduate students for plastic and allied industries and research organizations
- M2 To be a center of research and innovation for betterment of society in sustainable manner.
- M3 To develop state-of-the-art technologies for testing and consultancy for industry and Society
- M4 To cultivate strong ethical values to be a successful professionals and to become life-long learners

Program Educational Objectives (PEOs)

The Program Educational Objectives (PEOs) of B.Tech. Chemical Technology-Plastic Technology program are:

- **PEO1** : Graduates will be technically competent in the field of polymers, resins, processing and allied areas to cater the need of country.
- **PEO2** : Graduates will be able to innovate in designs, production of materials and processes for sustainable development of society.
- **PEO3** : Graduates will serve the industry to meet the challenges in terms of quality assurance and standardization to with stand the global competitiveness.
- **PEO4** : Graduates will discharge duties with professional attitudes and ethics.

Program Specific Outcomes:

responsible to apply practical skills, technical knowledge in major streams such as chemistry, manufacturing, processing, and applications areas of engineering and technology in plastic and allied industries

research organizations or to pursue higher studies in plastic technology and interdisciplinary programs with high regard for ethical values, environmental and social issues.

1.5. Establish consistency of PEOs with Mission of the Department (10)

(Generate a "Mission of the Department – PEOs matrix" with justification and rationale of the mapping)

Table : B.1.5

	PEO Statements	M1	M2	М3	M4
PEO1:	Graduates will be technically competent in the field of polymers, resins, processing and allied areas to cater the need of country.	3	1	2	2
PEO2:	Graduates will be able to innovate in designs, production of materials and processes for sustainable development of society.	3	2	2	1
PEO3:	Graduates will serve the industry to meet the challenges in terms of quality assurance and standardization to with stand the global competitiveness.	3	2	2	2
PEO4:	Graduates will discharge duties with professional attitudes and ethics.	3	2	2	3

PEO	M1	M2	M3	M4
	(State-of-the art technology)	(Research and Innovation)	(Training and consultancy)	(Ethical Values)
PEO1	Good facilities are required to train graduates with high level of skills and technical knowledge	Graduates should have inclination towards research and innovation for growth of industry or organization	Graduates should have expertise in testing and characterization of polymers and related materials for developments in industry or organization	Graduates should have good professional attitude along with technical knowledge
PEO2	Graduates should have good technical knowledge for innovative designs of new products and processes	Graduates should have innovative approach for finding solutions to problems in society	Graduates should have skills for working on modern tools required for development	Graduates should be able to analyze impact of development on society
PEO3	Graduates should have good technical knowledge for meeting challenges in professional carrier with confidence	Graduates should have innovative approach for continuous growth of industry or organization	Graduates should have good knowledge for handling real time problems	Graduates should have knowledge of laws and legislations for sustainable progress
PEO4	Graduates should have good knowledge regulations followed in industry	Graduates should be aware of impact of research and development on environment	Graduates should be able to focus on analyzing professional ethics required in future	Graduates should focus on overall development of stakeholders of industry and society

Program Outcomes (POs) of B. Tech. Chemical Technology - Plastic Technology

Graduating Students of B. Tech. Chemical Technology - Plastic Technology program will be able to:

	Program Outcomes (POs)	Graduate Attributes(GAs)
PO1	Apply the knowledge of mathematics, science, engineering	Engineering Knowledge
. 01	fundamentals, and an engineering specialization to the	Linginiceting knowledge
	solution of complex engineering problems.	
PO2	Identify, formulate, review research literature, and	Problem Analysis
FUZ	analyses complex engineering problems reaching	Froblem Analysis
	substantiated conclusions using first principles of	
DO3	mathematics, natural sciences, and engineering sciences.	Danier / Davids are art of
PO3	Design solutions for complex engineering problems and	Design/Development of
	design system components or processes that meet the	solutions
	specified needs with appropriate consideration for the	
	public health and safety, and the cultural, societal, and	
	environmental considerations.	
PO4	Use research-based knowledge and research methods	Conduct Investigations of
	including design of experiments, analysis and	complex problems
	interpretation of data, and synthesis of the information to	
	provide valid conclusions.	
PO5	Create, select and apply appropriate techniques,	Modern Tool Usage
	resources, and modern engineering and IT tools including	
	prediction and modelling to complex engineering activities	
	with an understanding of the limitations.	
PO6	Apply reasoning informed by the contextual knowledge to	The Engineer & Society
	assess societal, health, safety, legal and cultural issues and	
	the consequent responsibilities relevant to the	
	professional engineering practice.	
PO7	Understand the impact of the professional engineering	Environment and
	solutions in societal and environmental contexts, and	sustainability
	demonstrate the knowledge of, and need for sustainable	
	development.	
PO8	Apply ethical principles and commit to professional ethics	Ethics
	and responsibilities and norms of the engineering practice.	
PO9	Function effectively as an individual, and as a member or	Individual and team work
	leader in diverse teams, and in multidisciplinary settings.	
PO10	Communicate effectively on complex engineering activities	Communication
	with the engineering community and with society at large,	
	such as, being able to comprehend and write effective	
	reports and design documentation, make effective	
	presentations, and give and receive clear instructions.	
PO11	Demonstrate knowledge and understanding of the	Project management and
	engineering and management principles and apply these	finance
	to one's own work, as a member and leader in a team, to	
	manage projects and in multidisciplinary environments.	
PO12	Recognize the need forand have the preparation and	Life-long learning
-	ability to engage in independent and life-long learning in	3 3
	the broadest context of technological change.	
	and an added content of technological change.	l

SCHOOL OF CHEMICAL TECHNOLOGY B.TECH. PLASTIC TECHNOLOGY

Semester wise course structure (Applicable from Session 2022-23 for new entrants)

Year I, Semester I

Sl. No.	Course Type	Course Title	Subject Code	Credits				Sessiona	l Marks	}	ESE	Total	
110.	Type	Title	Couc		L	T	P	MSE	TA	Lab	Total	Lot	Marks
1.	BSC	Engineering. Physics	BPH-	4	3	0	2	15	20	15	50	50	100
2.	BSC	Engineering Mathematics-I	BMA-	4	3	1	0	30	20	-	50	50	100
3.	ESC	Introduction to Electrical Engineering	EEE-	4	3	0	2	15	20	15	50	50	100
4.	ESC	Introduction to Mechanical Engineering.	EME-	4	3	1	0	30	20	-	50	50	100
5.	HSMC	Professional Communication	HHS-	4	2	1	2	15	20	15	50	50	100
6.	ESC	Engineering Graphics	ECE-	2	0	0	4	30	20	-	50	50	100
				T	otal (Credits:	$2\overline{2}$					_	600

Year I, Semester II

Sl. No.	Course Type	Course Title	Subject Code	Credits								ESE	Total
					L	T	P	MSE	TA	Lab	Total		Marks
1.	BSC	Engineering. Chemistry	BCY-	4	3	0	2	15	20	15	50	50	100
2.	ESC	Introduction to Computer Science & Engineering	ECS-	4	3	1	0	30	20	-	50	50	100
3.	ESC	Introduction to Electronics Engineering	ETE-	4	3	1	0	30	20	-	50	50	100
4.	ESC	Introduction to Civil Engineering	ECE-	4	3	1	0	30	20	-	50	50	100
5.	ESC	Introduction to Chemical Engineering & Chemical Technology	ECT-	4	3	1	0	30	20	-	50	50	100
6.	ESC	Workshop Practice	EWS	2	0	0	4	-	20	30	50	50	100
				T	otal (Credits:	22						600

SCHOOL OF CHEMICAL TECHNOLOGY B.TECH. PLASTIC TECHNOLOGY

Semester wise course structure

(Applicable from Session 2023-24 for new entrants)

Year II, Semester III

Sl. No.	Course Type	Course Title	Subject Code	Credits						ESE	Total		
110.	1 y p c	Title	Couc		L	T	P	MSE	TA	Lab	Total	Lon	Marks
1.	BSC	Engineering Mathematics-II	BMA-	4	3	1	0	30	20	-	50	50	100
2.	ESC	Fluid Mechanics & Mechanical Operations (FMMO)	ТСН-	4	3	0	2	15	20	15	50	50	100
3.	PCC	Introduction to Polymer Chemistry (ITPC)	TP1-251	4	3	1	0	30	20	-	50	50	100
4.	PCC	Polymerization Engineering-I (PE-I)	TPL- 253	4	3	0	2	15	20	15	50	50	100
5.	PCC	Chemical Process Calculations (CPC)	TPL- 255	3	3	0	0	30	20	-	50	50	100
6.	HSMC	Industrial Economics & Management	HSE-	3	3	0	0	30	20	-	50	50	100
7.	PCC	Polymer Chemistry LAB (PC LAB)	TPL- 257	2	0	0	4	-	20	30	50	50	100
		·		T	otal (Credits:	24						700

Year II, Semester IV

Sl. No.	Course	Ourse Course Subject Credits Periods Sessional Marks Type Title Code							ESE	Total			
110.	Туре	Title	Code		L	T	P	MSE	TA	Lab	Total	ESE	Marks
1.		Modern Analytical Techniques (MAT)	BCY-	4	3	1	0	30	20	-	50	50	100
2.	ESC	Computer Oriented Numerical Methods(CONM)	BMA-	4	3	0	2	15	20	15	50	50	100
3.	PCC	Processing of Polymers -I (PP-I)	TPL- 252	4	3	0	2	15	20	15	50	50	100
4.	PCC	Chemical Engineering Thermodynamics (CET)	TPL- 254	4	3	1	0	30	20	-	50	50	100
5.	PCC	Heat Transfer Operation (HTO)	TPL- 256	3	3	0	0	30	20	-	50	50	100
6.	PCC	Polymerization Engineering-II (PE-II)	TPL- 258	3	3	0	0	30	20	-	50	50	100
7.	PCC	Polymerization Engineering Lab (PE LAB)	TPL- 260	2	0	0	4	-	20	30	50	50	100
				To	tal Cr	edits:	24				-		700

SCHOOL OF CHEMICAL TECHNOLOGY B.TECH. PLASTIC TECHNOLOGY

Semester wise course structure

(Applicable from Session 2024-25 for new entrants)

Year III, Semester V

Sl. No.	Course Type	Course Title	Subject Code	Credits				Sessiona	l Marks		ESE	Total	
					L	T	P	MSE	TA	Lab	Total		Marks
1.	PCC	Processing of Polymers -II (PP-II)	TPL- 351	4	3	0	2	15	20	15	50	50	100
2.	PCC	Plastic Mould Design and Dies(PMDD)	TPL- 353-	4	3	1	0	30	20	-	50	50	100
3.	PCC	Polymer Rheology and Testing (PRT)	TP1-355	3	3	0	0	30	20	-	50	50	100
4.	PCC	Mass Transfer Operation	TP1-357	3	3	0	0	30	20	-	50	50	100
5.	PCC	Chemical Reaction Engineering (CRE)	TPL- 359	3	3	0	0	30	20	-	50	50	100
6.	PCC	Polymer Testing Lab (PT LAB)	TPL- 361	3	0	0	6	-	20	30	50	50	100
7.	HSMC	Entrepreneurship Development(ED)	HHS-	2	2	0	0	30	20	-	50	50	100
	•		•	To	tal C	redits:	22	•	•	•			700

Year III, Semester VI

Sl. No.	Course Type	Course Title	Subject Code	Credits	P	eriod	S		Sessiona	al Marks		ESE	Total
				•	L	T	P	MSE	TA	Lab	Total	1	Marks
1.	PCC	Instrumentation & Process Control (IPC)	TPL- 352	4	3	0	2	15	20	15	50	50	100
2.	PCC	Structure & Properties Relationship of Polymers (SPRP)	TPL- 354	4	3	1	0	30	20	-	50	50	100
3.	PCC	Rubber Technology (RT)	TPL- 356	3	3	0	0	30	20	-	50	50	100
4.	PCC	Polymer Composite (PC)	TPL- 358	3	3	0	0	30	20	-	50	50	100
5.	PCC	Polymer Characterization Lab (PC LAB)	TPL- 360	3	0	0	6	-	20	30	50	50	100
6.	PEC-I	Program Elective –I											
		Process Equipment Design (PED)	TPL- 362	3	3	0	0	30	20	-	50	50	100
		Process Modeling & Simulation (PMS)	TPL- 364	3	3	0	0	30	20	-	50	50	100
		Process Optimization (PO)	TPL- 366	3	3	0	0	30	20	-	50	50	100
7.	OEC-I	Introduction to Polymer Science (IPS)	OPL-	2	2	0	0	30	20	-	50	50	100
				Total	Cred	its: 22	2						700

SCHOOL OF CHEMICAL TECHNOLOGY B.TECH. PLASTIC TECHNOLOGY

Semester wise course structure (Applicable from Session 2025-26 for new entrants)

Year IV, Semester VII

Sl. No.	Course Type	Course Title	Subject Code	Credits	I	Period	ls		Session	al Mark	KS .	ESE	Total
110.	Туре	Title	Code		L	Т	P	MSE	TA	Lab	Total	ESE	Marks
1.	PEC-II	Program Elective-II											
		Plastic Packaging (PP)	TPL- 451	4	3	1	0	30	20	-	50	50	100
		Polymer Adhesives (PA)	TPL- 453	4	3	1	0	30	20	-	50	50	100
		Plastic Product Technology (PPT)	TPL- 455	4	3	1	0	30	20	-	50	50	100
2.	PEC-III	Program Elective-III											
		Fiber and Film Technology (FFT)	TPL- 457	3	3	0	0	30	20	-	50	50	100
		Polymer Coating Technology (PCT)	TPL- 459	3	3	0	0	30	20	-	50	50	100
		Polymer Foams (PF)	TPL- 461	3	3	0	0	30	20	-	50	50	100
3.	PEC-IV	Program Elective -IV											
		High Performance Polymer Materials (HPPM)	TPL- 463	3	3	0	0	30	20	1	50	50	100
		Polymer Nano- composites (PNC)	TPL- 465	3	3	0	0	30	20	-	50	50	100
		Polymer Blends (PB)	TPL- 467	3	3	0	0	30	20	-	50	50	100
4.	Industrial Training	Industrial Training (IT)	TPL- 469	2	0	0	4	-	20	30	50	50	100
5.	OEC-II	Basics of Polymer Processing (BPP)	OPL- 451	2	2	0	0	30	20	-	50	50	100
6.	Minor Project	Minor Project	TPL- 471	6	0	0	12	-	20	30	50	50	100
7.	Seminar	Seminar	TPL- 473	2	0	0	4	-	50	-	50	50	100
				Total	Credi	ts: 22							700

Year IV, Semester VIII

Sl.	Course	Course	Subject	Credits]	Period	S		Sess	sional		ESE	Total
No.	Type	Title	Code						M	arks			Marks
					L	T	P	MSE	TA	Lab	Total		
1.	PEC-V	Program Elective -V											
		Plastic Waste Management (PWM)	TPL-452	4	3	1	0	30	20	i	50	50	100
		Characterization of Polymers (COP)	TPL-454	4	3	1	0	30 20 - 50 50					
		Specialty Polymers (SP)	TPL-256	4	3	1	0	30	20	i	50	50	100
2.	OEC-III	Testing of Polymers (TOP)	OPL-452	2	2	0	0	30	20	-	50	50	100
3.	Project	Project	TPL-458	16	0	0	24	-	100	100	200	200	400
	•			Total	Cred	its: 22	•					•	600

Total Program Credits: 180

OEC

Sl.	Course		Subject	Credits	redits Periods				ional		ESE	Total	
No.	Type	Title	Code						Ma	rks			Marks
					L	T	P	MSE	TA	Lab	Total		
1.	OEC-I	Introduction to Polymer Science (IPS)	OPL-352	2	2	0	0	30	20	ı	50	50	100
2.	OEC-II	Basics of Polymer Processing (BPP)	OPL-451	2	2	0	0	30	20	-	50	50	100
3.	OEC-III	Testing of Polymers (TOP)	OPL-452	2	2	0	0	30	20	-	50	50	100

PEC-I

Sl. No.	Course Type	Course Title	Subject Code	Credits		Periods Sessional Marks						ESE	Total Marks
					L	T	P	MSE	TA	Lab	Total		
1.	PEC-I	Process Equipment Design	TPL-362	3	3	0	0	30	20	-	50	50	100
2.	PEC-I	Process Modeling & Simulation	TPL-364	3	3	0	0	30	20	-	50	50	100
3.	PEC-I	Process Optimization	TPL-366	3	3	0	0	30	20	-	50	50	100

PEC-II

Sl. No.	Course Type	Course Title	Subject Code	Credits]	Periods Sessional Marks						ESE	Total Marks
1100	- 3 PC	11010	0040		L	T	P	MSE	TA	Lab	Total		11241211
1.	PEC-II	Plastic Packaging (PP)	TPL-451	4	3	1	0	30	20	-	50	50	100
2.	PEC-II	Polymer Adhesives (PA)	TPL-453	4	3	1	0	30	20	-	50	50	100
3.	PEC-II	Plastic Product Technology (PPT)	TPL-455	4	3	1	0	30	20	-	50	50	100

PEC-III

Sl. No.	Course Type	Course Title	Subject Code	Credits]	Periods			Sessional Marks				Total Marks
					L	T	P	MSE	TA	Lab	Total		
1.	PEC-III	Fiber and Film Technology (FFT)	TPL-457	3	3	0	0	30	20	-	50	50	100
2.	PEC-III	Polymer Coating Technology (PCT)	TPL-459	3	3	0	0	30	20	-	50	50	100
3.	PEC-III	Polymer Foams (PF)	TPL-461	3	3	0	0	30	20	-	50	50	100

PEC-IV

Sl. No.	Course Type	Course Title	Subject Code	Credits	Periods Sessional Marks							ESE	Total Marks
					L	T	P	MSE	TA	Lab	Total		
1.	PEC-IV	High Performance Polymer Materials (HPPM)	TPL-463	3	3	0	0	30	20	-	50	50	100
2.	PEC-IV	Polymer Nano- composites (PNC)	TPL-465	3	3	0	0	30	20	-	50	50	100
3.	PEC-IV	Polymer Blends (PB)	TPL-467	3	3	0	0	30	20	-	50	50	100

PEC-V

Sl. No.	Course Type	Course Title	Subject Code	Credits	Periods Sessional Marks						ESE	Total Marks	
1100	1,700		Couc		L	T	P	MSE	TA	Lab	Total		17141115
1.	PEC-V	Plastic Waste Management (PWM)	TPL-452	4	3	1	0	30	20	-	50	50	100
2.	PEC-V	Characterization of Polymers (COP)	TPL-454	4	3	1	0	30	20	-	50	50	100
3.	PEC-V	Specialty Polymers (SP)	TPL-256	4	3	1	0	30	20	-	50	50	100

Courses for Minor Degree : Name of Minor Degree : Plastic Processing Technology

Sl. No.	Course Type	Course Title	Subject Code	Credits	Periods				Sessi Ma			ESE	Total Marks
					L	T	P	MSE	TA	Lab	Total		
(i)	PCC	Introduction to Polymer Chemistry (ITPC)	TPI-251	4	3	1	0	30	20	-	50	50	100
(ii)	PCC	Processing of Polymers-I (POP-I)	TPL-252	4	4	3	0	2	15	-	50	50	100
(iii)	PCC	Processing of Polymers-II (POP-II)	TPL-351	4	4	3	0	2	15	-	50	50	100
(iv)	PCC	Plastic Mould Design and Dies(PMDD)	TPL-353-	4	3	1	0	30	20	-	50	50	100
(vi)	PEC-III	Plastic Product Technology (PPT)	TPL-455	4	3	1	0	30	20	-	50	50	100
	-			Total (Credits	: 20							600

Decisions of Course Structure Committee/ Committee of Implementation of NEP-2022

- 1. Award of certificate in Engineering and Technology on exit after completion of 1st year B.Tech program.
- 2. Award of Diploma in the Branch of Study (Plastic Technology) after completion of 2nd year B.Tech program.
- 3. The students of four year B.Tech. program completing courses with additional credits of 20 or more in their respective branch of study will be awarded degree of B.Tech Honours. The students can opt for additional courses from the list of PEC or from the online platform.
- 4. The students of four year B.Tech. program completing courses with additional credits of 20 or more in the area other than their branch of study will be awarded degree of B.Tech with major in their respective branch of study along with Minor degree in the area of specialization of additional courses.